Lecture 1

In what is almost certainly an egregious over-simplification, I claim that calculus is essentially a study of
the relationship between quantities and their rates. The traditional example is one of speed and distance:
how might we use an equation for distance over time to infer an object’s instantaneous speed? What is a
sensible interpretation for instantaneous speed? While perhaps the most natural, determining speed from
position is far from the only example of relating a quantity (distance) to a rate. A similar process is necessary
to model the spread of a disease throughout a population. This is the problem that will serve as our lens
through which we shall view the concepts of calculus.

1 Modeling Disease

How can we understand the behavior of a disease in a population as an example of the relationship between
rates and quantities? What is a practical way to model disease? What factors should we consider?

Naturally, these questions depend on the particular attributes of the disease in question. Our model will
change depending on whether the disease in lethal, whether recovered individuals gain permanent immunity,
how the virus itself evolves over time, etc. For the sake of this example and the following discussion, we
shall make some simplifying assumptions. However, it is worth considering how the model we develop here
might be adapted to address other, possibly more complex, circumstances.

In epidemiology, it is common to divide a population into the following three categories:

e Susceptible: those people who have not yet been infected and gained immunity;
e Infected: those people who are currently suffering from the illness in question;
e Recovered: those people who have recovered from the illness and are no longer contagious.

This is known as the SIR model. We shall make the following assumptions about our disease.

Let’s suppose that this disease is not lethal, and that those people who have recovered are immune to
further infection (the textbook uses the example of measles). In this way, people move from susceptible to
infected to recovered in the following manner:

S — 1 — R.

Note that the assumption about immunity prevents people from ever traveling backward along these arrows.
Additionally, the assumption that no individuals will die guarantees that the entire population is made up
of people in these three categories. If we let S be the number of susceptible people, I be the number of
infected people, and R be the number of recovered people, then

population = S+ I + R.

Therefore, modeling the behavior of this disease is equivalent to determining the values of S, I, and R at all
points in time. Having a model that achieves this goal will allow us to roughly (depending on the accuracy
of our model) predict the point in time when infection will be highest, and when the disease will have run
its course. We shall see that the values of S, I, and R depend on each other.

2 Finding Equations for S, I, and R

Let’s develop equations for the values of S, I, and R. As we observed earlier, it would be nice for these
equations to provide the values of S, I, and R at any point in time. In mathematical terms, we say that .5,
I, and R are functions of time, and write

S(t), I(t), R(t).

In this particular example, we will deviate from this convention, and refer to the quantities of S, I, and R at
time t as S, It, and Ry, respectively. This is a purely notational choice, and is due to the fact that recursive
equations (which these will be) are represented in this way.
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We shall begin with the equation for the number of recovered individuals in our population at time ¢. Because
people go in one direction from susceptible to recovered, we expect R; to increase with time. Since a person
can only recover if they have been infected, we would like R; to be a function of I;_;. Supposing (we shall
make a number of assumptions that may not perfectly capture the dynamics of an infection in the real world)
that it takes 14 days to recover once infected, we should expect the number of newly recovered individuals
to be 1/14 of the infected population, or
ﬁ-’tq.

(It is worth noting that this is perhaps a less accurate assumption than we might hope. Why?) Of course,
we must add this to the number of previously recovered individuals, which is conveniently given by R;_1. In
total, we then have the following equation:

1
Ry =R+ ﬂ]’tfb

Note that 1/14 was chosen arbitrarily, and that different diseases will have different values. Selecting the
value that best represents the real world is part of the art of tuning a mathematical model. Generally, this
quantity is referred to as the recovery coefficient, and we shall represent it with the letter b. This gives us
the following general equation:

Rt = Rt—l + bIt—l-

2.2 S

We now consider the equation for the number of susceptible individuals in our population at time ¢. Based on
the dynamics of our disease, we expect S; to decrease as t increases. (This is a consequence of our assumption
that individuals move in one direction from susceptible to infected to recovered.) Susceptible people become
infected when exposed to the infected people. Supposing that each infected individual contacts 0.04% of the
susceptible population on a given day, the number of susceptible people that are exposed to infection on a
given day is:
I;_1(0.00045;_1).

However, not every susceptible person who is exposed will become infected. The percentage of exposed
individuals who actually become infected is contingent upon the contagiousness of the disease. We might
suppose that our disease is particularly virulent, and give this a value of 50%. This means that the number
of infected people at time ¢ is:

0.5I;_1(0.00045,_1) = 0.00025;_1I;_1.

For notational simplicity, we shall combine the percentages representing contact rate and contagiousness into
a new value, which we shall call the transmission coefficient, and represent with the letter a. Since newly
infected people are subtracted out of the group of susceptible people, we have the following equation for S;:

Sy = St-1 —aSi—11i1.

2.3 1,

We have already done the hard work. Since the population is partitioned into the three groups S, I, and
R, the total number of infected individuals is precisely those who were previously infected (I;—1), plus those
newly infected (aS;—11;—1), minus those recovered (bl;—_1). This gives us the following equation:

L =5 1+ aSi—1l—1 —bl;_1.

In summary, we have the following three equations for our populations of susceptible, infected, and
recovered individuals at time t¢:

Se =811 —aSi—1li1
L =11 +aSe—1li—1 — bl
Rt = Rt—l + bIt_l.



If we have done our job well, these equations should capture the behavior of an infection in our population
over time. However, in their current form, they are a little bit hard to parse. Rather than representing the
size of S, I, and R at time ¢, let us simply keep track of the amount that each of these quantities changes
at each time-step. Observe that the change in S, I, and R is given by S; — S;_1, I} — I;_1, and Ry — Ry_1,
respectively. Applying this to the above equations, we obtain:

Sy — Si-1 = —aSi_11;1
Ii — Iy = aS;_11;—1 — bl
Rt — Rtfl = bItfl.
In mathematical notation, it is common to represent the change in some value X by the character A. In

this way, the expression AX is taken to mean “the change in X”. Let us use AS, AI, and AR to refer to
the changes in S, I, and R after one time-step t. Therefore, we might re-write the above equations as:

AS = —aSI
Al =aST —bl
AR =bl.

We have gotten rid of the subscripts because the idea of moving one time-step from S;_; to S; is baked into
the notation AS. We are still saying the same thing: the change in the population of susceptible people
after one time-step is a function of the number of currently infected and currently susceptible people.

Let us make one final alteration. Rather than describing the magnitude of change in S, I, and R (i.e.
AS, AI, and AR), let us consider the rate of change of these quantities. What does this mean? Just as
speed is the rate of change of distance (i.e. distance per time), we would like to consider the rate at which
the sizes of S, I, and R change per unit time. In mathematical terms, this rate is simply

as
At’
or “the change in S divided by the change in time.” We shall use the notation S’ (and I’, R') to refer to

this rate of change of S (and I, R). Fortunately, in our case AS =Sy — S;—q and At =¢t—(t —1) =1, so
S’ =AS (and I' = AI, R’ = AR). Accounting for these observations, we have:

S’ = —aSI
I' =aSI—bl
R =bl.

These are the equations we shall use to model the dynamics of our infection.

3 Using Our Model

Let’s put this model to use. Right now, our equations tell us how the populations of susceptible, infected,
and recovered people change day-to-day, subject to a recovery coefficient b, and a transmission coefficient a.
To actually go about modeling a real-world infection, we will need to replace these coefficients with actual
numbers, and we will need some additional information about the status of our population (i.e. how many
people are susceptible, infected, and recovered). In the context of an actual pandemic, our choices for these
values would be based on real-world observations; however, for simplicity, we will just pick our own.

Let’s suppose that we are modeling a measles outbreak in a population of 50,000 people. We shall use our
original recovery coefficient of b = 1/14. Our transmission coefficient will be a = 0.00001, which is roughly in
the range of numbers used in epidemic studies (according to the textbook that this lesson is based on). Say
that 2,100 people are currently infected, and 2,500 people are already recovered. Since our population has
50,000 people in total, this means that the number of susceptible individuals is 50,000—2,100—2,500 = 45,400.
We can summarize our model as follows:



$' = —0.0000151 (1)
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Sp = 45400, I, = 2100, Ry = 2500. (4)

Here, the values Sy, Iy, and Ry represent the initial values of our three population groups (i.e. their
values at time ¢ = 0). (Note that time ¢ = 0 is not necessarily the time of the first infection; we simply use it
to represent the first instance of the problem for our model. With this notation, it is possible to determine
the number of infections at ¢ = —1,—2,—3....) Because our model depends on these initial values, it is
called an initial value problem.

3.1 t=1
How might we use our initial value problem to determine the behavior of this measles infection over time?
Let’s begin by finding S, I, and R;.

First, we shall determine S’, I’, and R’. This is as simple as plugging the initial conditions Sy, Iy, and
Ry into the equations on lines 1, 2, and 3. Therefore:

S’ = —0.000015, I,
= —0.00001(45400)(2100)
= —953.4

and
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This means that from ¢ = 0 to t = 1, the sizes of S, I, and R are changing at rates of —953.4, 803.4, and
150 people per day, respectively. We can now determine S, I, and Ry by simply adding these values to S,
Iy, and Ry. Doing so:

S1 = Sp + 8" = 45400 — 953.4 = 44446.6

I, = Iy + I' = 2100 + 803.4 = 2903.4

Ry = Ry + R’ = 2500 + 150 = 2650.
(Note that our notation here is a bit lazy. We have claimed that S; = Sy + S’. In reality, S1 = Sy + S’At,
and At = 1. This is an important distinction; it may not always be the case that the rate S’ is calculated
over an interval of size 1. )

We can do a sanity check to make sure that everything is working properly: since our measles epidemic
is non-lethal, our total population at ¢ = 1 should still be 50,000 people. Indeed:

44446.6 4 2903.4 + 2650 = 50000.



