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The rainbow connection number of a strong graph G , denoted
~rc(G ), is the minimum edge-coloring of G such that there exists a
path P between any two vertices, where every edge in P is a
different color.
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Which graphs G have ~rc(G ) = n?

How can we characterize ~rc(G )?
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(1) Color each vertex differently...



Which graphs G have ~rc(G ) = n?

(2) ...and color all edges uv the color of v .



Which graphs G have ~rc(G ) = n?

So, we can rainbow-edge-color any strong graph
with at most n colors. Can we do better?



Which graphs G have ~rc(G ) = n?

Not if G is a cycle...
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Which graphs G have ~rc(G ) = n?

...but otherwise, YES!

Theorem
Let G be a strong oriented graph on n vertices, with arcs x ′x and
y ′y , where x 6= y and x and y have in-degree 1. Then, if x ′x , y ′y
have the ”path property”, G has rainbow coloring number at most
n − 1 (i.e. ~rc(G ) ≤ n − 1).

Theorem
All minimally strongly connected graphs have such arcs x ′x and
y ′y .

Theorem
If G is a minimally strongly connected (MSC) oriented graph on n
vertices, and G is not a cycle, then G has rainbow connection
number at most n − 1 (i.e. ~rc(G ) ≤ n − 1).
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Which graphs G have ~rc(G ) = n?
Introducing: The Path Property

Definition
Two arcs x ′x and y ′y in G have the path property if there exists a
path from x ′ to y that does not include x ′x and a path from y ′ to
x that does not include y ′y .
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Which graphs G have ~rc(G ) = n?
A coloring scheme for MSC graphs

1) Find two edges x ′x and y ′y that satisfy the ”path property” and
the in-degree condition.

2) Color x and y with color 1, and each other vertex with a unique
color in {2, ..., n − 1}.

3) Color all edges going into a vertex the color of that vertex.
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Which graphs G have ~rc(G ) = n?
A slightly easier characterization

Note that:

Theorem
For any spanning subgraph H of G , ~rc(H) ≥ ~rc(G ).

Also, note that if G does not have any Hamiltonian cycles, then
either G is MSC and not a cycle, or some spanning subgraph H of
G is MSC and not a cycle. In either case, this implies that
~rc(G ) ≤ n − 1.

Theorem
If G is not Hamiltonian, then ~rc(G ) ≤ n − 1.
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Which graphs G have ~rc(G ) = n?
An actual example
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What is the rainbow connection number of tournaments?
One final theorem

Theorem
For any strong tournament T , diam(T ) ≤ ~rc(T ) ≤ diam(T ) + 2.
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This paper poses two open questions:
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2) Which tournaments have rainbow connection
number 2?
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Thanks!
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