Rainbow Connection in Oriented Graphs
 An Overview of Dorbec et al. 2014

A. Romer ${ }^{1}$
${ }^{1}$ Department of Mathematics
University of Victoria

Math 522

What is the "rainbow connection"?

All graphs in this paper are oriented and strong.

What is the "rainbow connection"?

All graphs in this paper are oriented and strong. Recall that a graph is strong if there exists a directed path between any two vertices.

What is the "rainbow connection"?

The rainbow connection number of a strong graph G, denoted $\overrightarrow{r c}(G)$, is the minimum edge-coloring of G such that there exists a path P between any two vertices, where every edge in P is a different color.

What is the "rainbow connection"?

What is the "rainbow connection"?

This paper asks 2 main questions:

What is the "rainbow connection"?

This paper asks 2 main questions:

1) Which graphs G have $\overrightarrow{r c}(G)=n$?

What is the "rainbow connection"?

This paper asks 2 main questions:

1) Which graphs G have $\overrightarrow{r c}(G)=n$?
2) What is the rainbow connection number of tournaments?

Which graphs G have $\overrightarrow{r c}(G)=n$?

How can we characterize $\overrightarrow{r c}(G)$?

Which graphs G have $\overrightarrow{r c}(G)=n$?

Some preliminary observations

Theorem
For any strong graph $G, \overrightarrow{r c}(G) \geq \operatorname{diam}(G)$.

Which graphs G have $\overrightarrow{r c}(G)=n$?

Some preliminary observations

Theorem
For any strong graph $G, \overrightarrow{r c}(G) \geq \operatorname{diam}(G)$.
Theorem
For any strong graph $G, \overrightarrow{r c}(G) \leq n(G)$.

Which graphs G have $\overrightarrow{r c}(G)=n$?

Which graphs G have $\overrightarrow{r c}(G)=n$?
(1) Color each vertex differently...

Which graphs G have $\overrightarrow{r c}(G)=n$?
(2) \ldots and color all edges $u v$ the color of v.

Which graphs G have $\overrightarrow{r c}(G)=n$?

So, we can rainbow-edge-color any strong graph with at most n colors. Can we do better?

Which graphs G have $\overrightarrow{r c}(G)=n$?

Not if G is a cycle...

Which graphs G have $\overrightarrow{r c}(G)=n$?
...but otherwise, YES!

Which graphs G have $\overrightarrow{r c}(G)=n$?

...but otherwise, YES!
Theorem
Let G be a strong oriented graph on n vertices, with arcs $x^{\prime} x$ and $y^{\prime} y$, where $x \neq y$ and x and y have in-degree 1 . Then, if $x^{\prime} x, y^{\prime} y$ have the "path property", G has rainbow coloring number at most $n-1$ (i.e. $\overrightarrow{r c}(G) \leq n-1$).

Which graphs G have $\overrightarrow{r c}(G)=n$?

...but otherwise, YES!
Theorem
Let G be a strong oriented graph on n vertices, with $\operatorname{arcs} x^{\prime} x$ and $y^{\prime} y$, where $x \neq y$ and x and y have in-degree 1 . Then, if $x^{\prime} x, y^{\prime} y$ have the "path property", G has rainbow coloring number at most $n-1$ (i.e. $\overrightarrow{r c}(G) \leq n-1$).

Theorem
All minimally strongly connected graphs have such arcs $x^{\prime} x$ and $y^{\prime} y$.

Which graphs G have $\overrightarrow{r c}(G)=n$?

...but otherwise, YES!
Theorem
Let G be a strong oriented graph on n vertices, with arcs $x^{\prime} x$ and $y^{\prime} y$, where $x \neq y$ and x and y have in-degree 1 . Then, if $x^{\prime} x, y^{\prime} y$ have the "path property", G has rainbow coloring number at most $n-1$ (i.e. $\overrightarrow{r c}(G) \leq n-1$).

Theorem
All minimally strongly connected graphs have such arcs $x^{\prime} x$ and $y^{\prime} y$.

Theorem
If G is a minimally strongly connected (MSC) oriented graph on n vertices, and G is not a cycle, then G has rainbow connection number at most $n-1$ (i.e. $\overrightarrow{r C}(G) \leq n-1$).

Which graphs G have $\overrightarrow{r c}(G)=n$?

Introducing: The Path Property

Definition

Two arcs $x^{\prime} x$ and $y^{\prime} y$ in G have the path property if there exists a path from x^{\prime} to y that does not include $x^{\prime} x$ and a path from y^{\prime} to x that does not include $y^{\prime} y$.

Which graphs G have $\overrightarrow{r c}(G)=n$?

Introducing: The Path Property

Definition

Two arcs $x^{\prime} x$ and $y^{\prime} y$ in G have the path property if there exists a path from x^{\prime} to y that does not include $x^{\prime} x$ and a path from y^{\prime} to x that does not include $y^{\prime} y$.

Which graphs G have $\overrightarrow{r c}(G)=n$?

Introducing: The Path Property

Definition

Two arcs $x^{\prime} x$ and $y^{\prime} y$ in G have the path property if there exists a path from x^{\prime} to y that does not include $x^{\prime} x$ and a path from y^{\prime} to x that does not include $y^{\prime} y$.

Which graphs G have $\overrightarrow{r c}(G)=n$?
A coloring scheme for MSC graphs

Which graphs G have $\overrightarrow{r c}(G)=n$?
A coloring scheme for MSC graphs

1) Find two edges $x^{\prime} x$ and $y^{\prime} y$ that satisfy the "path property" and the in-degree condition.

Which graphs G have $\overrightarrow{r c}(G)=n$?
A coloring scheme for MSC graphs

1) Find two edges $x^{\prime} x$ and $y^{\prime} y$ that satisfy the "path property" and the in-degree condition.
2) Color x and y with color 1 , and each other vertex with a unique color in $\{2, \ldots, n-1\}$.
3) Color all edges going into a vertex the color of that vertex.

Which graphs G have $\overrightarrow{r c}(G)=n$?
An example

Which graphs G have $\overrightarrow{r c}(G)=n$?
An example

Which graphs G have $\overrightarrow{r c}(G)=n$?
An example

Which graphs G have $\overrightarrow{r c}(G)=n$?
An example

Which graphs G have $\overrightarrow{r c}(G)=n$?
A slightly easier characterization

Note that:

Theorem
For any spanning subgraph H of $G, \overrightarrow{r c}(H) \geq \overrightarrow{r c}(G)$.

Which graphs G have $\overrightarrow{r c}(G)=n$?

A slightly easier characterization

Note that:

Theorem
For any spanning subgraph H of $G, \overrightarrow{r c}(H) \geq \overrightarrow{r c}(G)$.
Also, note that if G does not have any Hamiltonian cycles, then either G is MSC and not a cycle, or some spanning subgraph H of G is MSC and not a cycle. In either case, this implies that $\overrightarrow{r c}(G) \leq n-1$.

Which graphs G have $\overrightarrow{r c}(G)=n$?

A slightly easier characterization

Note that:

Theorem
For any spanning subgraph H of $G, \overrightarrow{r c}(H) \geq \overrightarrow{r c}(G)$.
Also, note that if G does not have any Hamiltonian cycles, then either G is MSC and not a cycle, or some spanning subgraph H of G is MSC and not a cycle. In either case, this implies that $\overrightarrow{r c}(G) \leq n-1$.

Theorem
If G is not Hamiltonian, then $\overrightarrow{r c}(G) \leq n-1$.

Which graphs G have $\overrightarrow{r c}(G)=n$?
A slightly easier characterization

So, which graphs actually have $\overrightarrow{r c}(G)=n$?

Which graphs G have $\overrightarrow{r c}(G)=n$?

A slightly easier characterization

So, which graphs actually have $\overrightarrow{r c}(G)=n$?

Theorem
A graph G has $\overrightarrow{r c}(G)=n$ iff G is Hamiltonian and no cycle contains arcs that satisfy the path property.

Which graphs G have $\overrightarrow{r c}(G)=n$?
Unallowable subgraphs

Which graphs G have $\overrightarrow{r c}(G)=n$?
An actual example

What is the rainbow connection number of tournaments?

How can we characterize $\overrightarrow{r c}(T)$?

What is the rainbow connection number of tournaments?

How can we characterize $\overrightarrow{r c}(T)$?

(Again, we will assume that T is strong.)

What is the rainbow connection number of tournaments?

Some preliminary observations

Theorem
For any strong tournament T with $n \geq 5$ vertices, $\overrightarrow{c c}(T) \geq 2$.

What is the rainbow connection number of tournaments?

Some preliminary observations

Theorem
For any strong tournament T with $n \geq 5$ vertices, $\vec{c}(T) \geq 2$.
Theorem
For any strong tournament $T n \geq 5$ vertices, $\overrightarrow{r c}(T) \leq n-1$.

What is the rainbow connection number of tournaments?
A proof by example

What is the rainbow connection number of tournaments?
A proof by example

What is the rainbow connection number of tournaments?
A proof by example

What is the rainbow connection number of tournaments?
A proof by example

What is the rainbow connection number of tournaments?

One final theorem

Theorem
For any strong tournament $T, \operatorname{diam}(T) \leq \overrightarrow{r c}(T) \leq \operatorname{diam}(T)+2$.

What is the rainbow connection number of tournaments?
One final proof by example

What is the rainbow connection number of tournaments?
One final proof by example

What is the rainbow connection number of tournaments?
One final proof by example

What is the rainbow connection number of tournaments?
One final proof by example

What is the rainbow connection number of tournaments?
One final proof by example

What is the rainbow connection number of tournaments?
One final proof by example

What is the rainbow connection number of tournaments?
One final proof by example

Open Questions

This paper poses two open questions:

Open Questions

This paper poses two open questions:

1) Are there any tournaments with $\overrightarrow{r c}(T)=\operatorname{diam}(T)+2$?

Open Questions

This paper poses two open questions:

1) Are there any tournaments with
$\overrightarrow{r c}(T)=\operatorname{diam}(T)+2$?
2) Which tournaments have rainbow connection number 2?

Thanks!

䍰 Dorbec, P., Schiermeyer, I., Sidorowicz, E., and Sopena, E. (2014). Rainbow connection in oriented graphs. Discrete Applied Mathematics, 179, 69-78.

